At a time when a huge pulse of uncertainty has been injected into the global project to stop the planet’s warming, scientists have just raised the stakes even further.
In a massive new study published Wednesday in the influential journal Nature, no less than 50 authors from around the world document a so-called climate system “feedback” that, they say, could make global warming considerably worse over the coming decades.
That feedback involves the planet’s soils, which are a massive repository of carbon due to the plants and roots that have grown and died in them, in many cases over vast time periods (plants pull in carbon from the air through photosynthesis and use it to fuel their growth). It has long been feared that as warming increases, the microorganisms living in these soils would respond by very naturally upping their rate of respiration, a process that in turn releases carbon dioxide or methane, leading greenhouse gases.
It’s this concern that the new study validates. “Our analysis provides empirical support for the long-held concern that rising temperatures stimulate the loss of soil C to the atmosphere, driving a positive land C–climate feedback that could accelerate planetary warming over the twenty-first century,” the paper reports.
This, in turn, may mean that even humans’ best efforts to cut their emissions could fall short, simply because there’s another source of emissions all around us. The very Earth itself.
“By taking this global perspective, we’re able to see that there is a feedback, and it’s actually going to be massive,” said Thomas Crowther, a researcher with the Netherlands Institute of Ecology who led the research published Wednesday.
The new study is actually a compilation of 49 empirical studies, examining soil carbon emissions from research plots around the globe. The different studies produced variable results, including some cases in which soils actually pulled carbon from the air rather than releasing it. However, the researchers insist there was a pattern globally that was “predictable”: Soil carbon losses generally tended to track how much warming a region had seen, and how thick the upper soil layer was.
Read more here.